Telegram Group & Telegram Channel
Tree of Thoughts [2023] - заставляем GPT исследовать чертоги своего разума

Поговорим о разных видах взаимодействия с LLM.
1) Базовый - составляем запрос с задачей в модель, получаем ответ на выходе
2) Chain of Thoughts - просим модель описывать пошагово ход решения задачи и рассуждения, и в конце ответ.
3) Iterative refinement - В течение нескольких запросов, просим модель критиковать и улучшать решение.
4) В случае, если нам нужен ответ на задачу, в которой применимо ансамблирование ответов, можно запускать предыдущие методы несколько раз и потом комбинировать их ответы в один финальный

В статье авторы изобретают ещё более хитрый способ заставить модель анализировать. Мы генерируем дерево мыслей. Корень - это изначальная задача, а дети любой вершины - это добавление к рассуждению какой-то мысли. Данное дерево можно растить, посылая в LLM запрос вида "придумай следующий шаг к решению", и подавая текущее состояние на вход.

Как оценивать качество вершины? Используем саму же LLM, веря, что модель с оценкой мыслей справляется лучше, чем с их генерацией. Таким образом, мы можем каким-нибудь алгоритмом обхода дерева с эвристиками искать в нём решение, в котором шаги решения будут высоко оценены моделью. Я думаю, что детали тут слишком быстро устареют и конкретный алгоритм нам не важен.

Что по результатам? Они не радикально выше, но, видимо, схема помогает решать некоторые задачи, в которых такое "поисковое мышление" уместно. Например, большой буст наблюдается в решении мини-кроссвордов, т.е. заполнении буквами сетку 5 на 5 согласно вопросам. Классический способ решения подразумевает как раз поиск по дереву, так что прирост от подхода ожидаем.

Возможно, что со временем мы придём к какой-то black-box абстракции над LLM, где схема промптинга станет частью скрытой от пользователя реализации, и подобные алгоритмы конструирования ответа станут весьма сложными. А вы как думали, сверхсильный-ИИ-GPT возьмёт и расскажет всё просто так?

Получасовой обзор статьи

@knowledge_accumulator



tg-me.com/knowledge_accumulator/76
Create:
Last Update:

Tree of Thoughts [2023] - заставляем GPT исследовать чертоги своего разума

Поговорим о разных видах взаимодействия с LLM.
1) Базовый - составляем запрос с задачей в модель, получаем ответ на выходе
2) Chain of Thoughts - просим модель описывать пошагово ход решения задачи и рассуждения, и в конце ответ.
3) Iterative refinement - В течение нескольких запросов, просим модель критиковать и улучшать решение.
4) В случае, если нам нужен ответ на задачу, в которой применимо ансамблирование ответов, можно запускать предыдущие методы несколько раз и потом комбинировать их ответы в один финальный

В статье авторы изобретают ещё более хитрый способ заставить модель анализировать. Мы генерируем дерево мыслей. Корень - это изначальная задача, а дети любой вершины - это добавление к рассуждению какой-то мысли. Данное дерево можно растить, посылая в LLM запрос вида "придумай следующий шаг к решению", и подавая текущее состояние на вход.

Как оценивать качество вершины? Используем саму же LLM, веря, что модель с оценкой мыслей справляется лучше, чем с их генерацией. Таким образом, мы можем каким-нибудь алгоритмом обхода дерева с эвристиками искать в нём решение, в котором шаги решения будут высоко оценены моделью. Я думаю, что детали тут слишком быстро устареют и конкретный алгоритм нам не важен.

Что по результатам? Они не радикально выше, но, видимо, схема помогает решать некоторые задачи, в которых такое "поисковое мышление" уместно. Например, большой буст наблюдается в решении мини-кроссвордов, т.е. заполнении буквами сетку 5 на 5 согласно вопросам. Классический способ решения подразумевает как раз поиск по дереву, так что прирост от подхода ожидаем.

Возможно, что со временем мы придём к какой-то black-box абстракции над LLM, где схема промптинга станет частью скрытой от пользователя реализации, и подобные алгоритмы конструирования ответа станут весьма сложными. А вы как думали, сверхсильный-ИИ-GPT возьмёт и расскажет всё просто так?

Получасовой обзор статьи

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/76

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

Knowledge Accumulator from ca


Telegram Knowledge Accumulator
FROM USA